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Abstract—Similarly to what happens in the finite element method, the concept of convergence
can be used for justifying the use of the virtual work and variational theorems in the derivation

of the equations of the theory of shells.
It is proved that the two-dimensional solution becomes more and more near the three-

dimensional ones as the thickness tends to zero, provided the relative values of the bending
and membrane stiffness coefficients are not changed when the shell becomes thinner and

thinner.
Such condition can be respected only if the shell is a generalized one, i.e. if the couple-

stresses are not supposed to vanish.
The analysis gives a upper bound to the order of magnitude of the distance between the

exact and approximate solution and thus provides a powerful method for testing the efficiency
and consistency of any particular theory of shells.

1. INTRODUCTION

Although the theory of shells is usually presented as resulting from the three-dimensional
model provided by three-dimensional elasticity, it is well known that a direct approach is
possible, i.e., that the shell equations can be established without referring to the three-
dimensional theory.

The three-dimensional model is privileged however, not because it is more consistent in
itself, but because it is believed to provide a better simulation of the mechanical behaviour
of solid bodies. For this reason, and not for any other, it is usually regarded as the funda-
mental model which generates all the others.

Direct approaches for the derivation of shell equations have thus been disliked by most
specialists in the field. Indeed, although they can provide the right equations, they say
nothing about the connexion between such equations and the three-dimensional ones.

Mathematicians have therefore preferred to derive the shell equations from the three-
dimensional model, by introducing approximative assumptions, and a great deal of re-
search[l1, 2] has been inspired by the wish of improving and controlling such approximation
procedure.

Energy methods have also been neglected by many researchers because, in the past, they
have been presented practically as direct methods, in the sense that the connexion between
the solutions they lead to and the corresponding three-dimensional solutions has not been
conveniently investigated. In other words, the virtual work principle and variational
theorems have been used, but such use has not been justified.
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The need for a justification was felt more strongly when the energy methods started to be
used in the generation of discrete models, with the help of the finite element technique, as it
became quite clear that such discrete models were to be discarded if the sequences of
approximate discrete solutions obtained by considering successive subdivisions of the body
into finite elements with indefinitely decreasing dimensions did not converge to the exact
solutions.

The criterion of the convergence to the exact solution was not new however: it has indeed
been considered as the fundamental one to be respected by any other approximate method
of mathematical analysis like the Ritz method and the finite difference method.

In a previous paper by the author[3], the mathematical theory of structures was presented
as a hierarchic collection of models successively generated with the help of two general
methods which were justified by theorems of convergence.

In such synthetic vision the theory of shells appears as a two-dimensional approximate
model generated from the three-dimensional one, and the convergence concepts and
theorems must be used in order that it can be declared as a valid approximation.

The situation is however not quite the same as in the cases considered above. In such
cases, indeed, a sequence of approximate solutions must converge to the exact one. In the
theory of shells, however, what must be appreciated is the convergence of a sequence of
three-dimensional solutions to a two-dimensional solution, i.e. the convergence of a sequence
of exact solutions to the approximate one.

The important point indeed is to prove that the two-dimensional solution becomes more
and more near the corresponding three-dimensional ones as the shell becomes thinner and
thinner, provided the relative values of the bending and membrane stiffnesses are not
changed when the thickness tends to zero.

Such condition cannot be respected in a classical shell in which the bending moments
result merely from the ordinary stresses distributed in the thickness ¢, because the bending
stiffnesses are then proportional to ¢* and the membrane stiffnesses simply to ¢. But it can be
respected in a generalized shell[4] in which the couple-stresses are not supposed to vanish.

In the present paper, some general concepts and results presented in previous papers are
first reminded and the three- and two-dimensional models are then described independently
of each other. Two general approaches for deriving the two-dimensional model from the
three-dimensional one are finally considered and the application of convergence analysis is
exemplified as applied to both approaches.

2. SOME GENERAL CONCEPTS AND RESULTS

As the present paper is essentially concerned with the variational derivation of the theory
of shells, a general theory of variational methods will be needed which was developed in
another paper by the author[5]. The main topics of such theory will be summarized in this
section.

The theory considers a variational problem consisting in the minimization of a given
functional F on a space X, and an approximate solution s,” to such problem obtained from
the minimization of functional F on a subspace X' of X. Its main result is inequality (2.12)
which provides an upper bound for the distance between the approximate solution, s,’, and
the exact solution, s.

Let X be a Banach[6] space and let & denote a family of continuous functionals on X.

Assume that each functional of the family admits a proper global minimizer in each
subset of a certain class of subsets of X, called constrained subsets of X. This means that
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each constrained subset C < X contains an element s such that
F(s) < F(c) 2.1

where ¢ denotes any element in C distinct from s.

The constrained subsets are assumed to be homeomorphic to a certain subspace of X
and the union of all the constrained subsets is assumed to coincide with the whole space, X.

Let us consider now, for each functional F of the family &, the set of all the proper global
minimizers corresponding to all the constrained subsets of X. We call such set the minimiz-
ing subset of X corresponding to F and assume the family & to be such that the union of
all the minimizing subsets corresponding to all the different functionals of & coincides with
the whole space, X.

The intersection of each minimizing and each constrained subset is assumed to contain
one, and no more than one, element.

Two elements belonging to the same constrained (or minimizing) subset are called
isoconstrained (or isominimizing) elements.

Let now B be an operator with domain X and range X', X’ denoting a subspace of X.
Considering the definition of operator, a unique element in X’ must correspond to each
element in X, although more than one element in X may correspond to each element in X’.
Operator B is assumed:

(i) bounded and continuous,
and such that

(i1) The B-image of any element belonging to X' coincides with the element itself, i.e.

B(e) =e if eis an element of X', (2.2)

(iii) constrained and minimizing subsets, meeting the same requirements as those in X,
can be defined in X', with respect to the same family of functionals, &,

(iv) the B-images of isoconstrained elements in X are isoconstrained elements in X',
although not necessarily in X.

The constrained subset C’ of X' which contains the B-images of the elements of a given
constrained subset C of X is said to correspond to C.

A given minimizing subset D’ of X’ is said to correspond to a certain minimizing subset
D of X if they both correspond to the same functional F e #.

A second operator, 4, can thus be considered, also with domain X and range X’, which
makes the intersection of each constrained and each minimizing subset of X correspond to
the intersection of the corresponding constrained and minimizing subsets of X'.

Operator A is assumed also bounded and continuous, just like B, and also such that

Ale)=e if eeX'. (2.3)

The A-image of an element e of X is called the approximation of ¢ in X".

We remark that the A-images of any two isominimizing elements of X are isominimizing
elements of X'. On the other hand, the 4-images of any two isoconstrained elements of X
are also isoconstrained elements of X'

Let now s be an arbitrary element in X, s’ the B-image of s and s,” the 4-image of s.
s"and s, are clearly isoconstrained in X'. The situation is symbolically represented in Fig. 1.

Let C be the constrained subset of X which contains 5. Let C’ be the corresponding
constrained subset of X’. 5" and s, are both contained in C’.

It is assumed that an element s, exists in C’ such that s,’ is the B-image of s, .

1JSS Vol. 10 No. 5—E
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Fig, 1.

Let now s be contained in the minimizing subset of X corresponding to functional F.
This means that, by virtue of (2.1),

F(s) € F(s,). (2.4)

On the pther hand, as s5,’ is the 4-image of s, s,” belongs to the minimizing subset of X’
which also corresponds to F, and therefore

E(s,) € F(s'). (2.5)
Let now
OF = F(s) — F(s) 2.6)
0, F = F(s,) — F(s,). 2.7
Introducing (2.6) and (2.7) in (2.4), there results
F(s') + 0F — 6, F € F(s,). (2.8)
Combination of (2.8) with (2.5) yields
F(s)y+ 0F — 0, F 2 F(s,) € F(s"). 2.9
Therefore,
F(s") — F(s,)} € |6F| + |9, F|. (2.10)
We assume now that a metric can be introduced in X such that
F(s'y — F(s,) = d*(s, 5,)). (2.11)
Combining the triangular inequality with (2.10) and (2.11), there results
d(s, s,y 2d(s, s) + d(s', 5,) € d(s, ) +\/|—m (2.12)

Inequality (2.12), which gives an upper bound for the distance between any element in X
and its approximation in X', will become in the sequel the base of our discussion.

3. THE THREE- AND TWO-DIMENSIONAL MODELS

No difficulty appears in the derivation of the two-dimensional theory if no attempt is
made for connecting it with the three-dimensional one.

A complete duality can even be established between the equations of the three- and
two-dimensional models and their derivations, if such models are chosen to be the three-
and two-dimensional Cosserat theories, and not merely the classical Theory of Elasticity
and the theory of shells, which result from the first ones if the couple stresses are assumed to
vanish.
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Simultaneous independent descriptions of Cosserat’s three- and two-dimensional linear
theories are presented in this section.

ree| .. . . three| . . .|V .
The th e-dlme:nswnal model is referred to a -dimensional domain with
two two S
boundar z
y ak
. 61’ 62 > 63 . . . V
A system of orthogonal co-ordinates is considered in s/
1> 52
ocand p . .
Let N and M {generalized traction vectors) denote the resultant force and moment
. . . 4 .
vectors per unit area of a given sur.face contained in . Let v denote the unit vector
length line S
surface o,and p; .
normal to such line and tangent to S| Lett N, and M, (generalized stress vectors) denote

the resultant force and moment vectors associated with the co-ordinate lines.

tetrahedron bounded by

The equilibrium conditions for an infinitesimal .
triangle

x h 1 co-ordi e .
‘ and three orthogonal co-ordinate surfaces lead to the equilibrium equations}

I'" and two orthogonal co-ordinate lines

=) 6, N =% N,v, 3.1

F=leivi' M =3 M,v,. (3.2)

Considering the force equilibrium of an arbitrary fragment of the body, we obtain, with
the help of the divergence theorem, the first equilibrium field equation

Z(H%).+Hf=0

i i/ ,i

N,
Y (Hh_) +HF =0 (3.3)
where /; denotes the scale factor along the co-ordinate line i and

H="hh,h;. H=hh,. 3.4

Considering moment equilibrium, we obtain the second equilibrium field equation

z[(H%).+H”iA6i]+Hg:0

M
ZH[( “) + Ha,_ A Na] + HG = 0.

i i/ i ha
3.5
here | 229 8| 4re th lized body f d densiti
w F and G are the generalized body force and moment densities on sl
The strain-displacement equations
13 U a
e, =—+a; rn0 E,=h’ +a, A0 (3.6)
0, 10
k = —'—L = .—a
=5 | K= 37

T Latin indices are supposed to take-up values 1, 2 or 3, while Greek indices can take-up the values 1 and 2.
t Three left

two -dimensional equations are written at
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can be established by combining the equilibrium equations (3.1), (3.2), (3.3) and (3.5) with
equation

fZ(oi.ei+ui.k,-)dV fZ(Na.E,+Ma.K,)dS
v i S a

=f(f.u+g.e)dV =J-(F.U+G.@)dS
v’ S’

+f(c.u+p.e)dz +f(N.U+M.®)dr (3.8)
b g r

’

which expresses the work principle written for an arbitrary fragment I; , with boundary

’l{l" of the body. The vector fields involved in (3.8) are of course supposed to admit the
derivatives involved in (3.3), (3.5), (3.6) and (3.7).
We could also start from (3.6) and (3.7) and derive the equilibrium equations with the

help of (3.8).

Constitutive equations can be found now by making the strain energy density on ? g" ,
H 5
. . e; and k;
an exclusive function of vectors E, and K|
. G;, B;, e; and k;
Let indeed the components of vectors N,. M., E, and K, be denoted by
Gijs Kijs €55 and k;;
N,j, M,;, E,, and K,
The stress—strain equations have then the form
ow, oW
- N, = 39
i dej; * QE,; (39
= M. =—2 3.10
SLRFT = 3K, (3.10)

It is easy to conclude from (3.1) and (3.2), and from the invariance of internal work that
Gij> Wij, €;; and k;; three-dimensional tensors
Naﬂ s Maﬂ’ Edﬂ and Kaﬂ

are components of second-order . .
two-dimensional
[and that N,;, M,;, E,; and K,; are components of vectors].t

vV W
,then, | ¥
S W
invariants of such strain tensors and vectors.
As linearity is assumed, the only invariants which can be involved are the first and second

If isotropy is assumed on must be an exclusive function of the fundamental

, the second invariant (the first always

. . . e
invariants of the symmetric parts of tensor ‘ EU
ap

vanishes) of the skew-symmetric part of the same tensor, [the invariant of vector E,; (its
length)], i.e.

+ The parts of the text which concern exclusively the two-dimensional model are within brackets.
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e=ej e +es
0! = €22 3(ezs + €33) o
S Pleas + €32) €33
o’ = 0 %(923—332)+,,,
¢ i(esz — €23) 0
.. . .k, and
and the corresponding invariants KK’ and
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E=E, +E,, 3.11)
ORI W I
E = %(EzIO—Eu) %(E”O_E“) (.13)
Ey = E3 + Ep3? (3.13)
];(“a’, of the curvatures Ik(:J )

The strain energy density has thus the form

Wy =3 + 2ue* — 2pe,’ — 2pe,
+ 3 + 29)k? — ¢k, — 2xk, + mek

The term proportional to disappears

ek
EK

curvature are possible when the components of vectors

Ws = %(Z + 2ﬁ)E2 - 2ﬁEsl - 2ﬁEa,
+ VE; + H@ + 2y)K* — K/

— 2K, + tky + REK (3.15)

however if it is assumed that no changes of

K

vanish everywhere.
M,

The stress—strain equations for the linear case become thent

o;; = ple; + e;) + pley; —e;)
+ Aed;;

+ Pkd;

Equations (3.1), (3.2), (3.5), (3.16-19) must

G=0

}onE1
p=pn

u=1ua
0=90

}onEz.

In the current literature, the state of the s

Naﬂ = ﬁe(EaB + Eﬂa) + ﬁ(Eaﬁ - Eﬂa)

+ 1ES,, (3.16)
N,3 =2VE,; (3.17)
Maﬂ = J(Kaﬁ + Kﬁa) + Z(Kaﬂ - Kﬂfl)

+ §K,, (3.18)
M, =27K,; (3.19)

be supplemented by the boundary conditions

" z%} onT, (3.20)
g :g} onT, (3.21)

tructure free from external forces is usually

taken as the underformed state of the structure, with respect to which strains and displace-
ments are measured. If this is done, and initial stresses are present, the stress—strain equations
cease to be homogeneous while the strain—displacement equations are always homogeneous.

t [Components M,z and K,; are usually replaced by M;; and Ky related to M, and K,z by
Muﬁ/ =M;.a3 A ag
KuB,::Ka . as A ag

In terms of such magnitudes, equation (3.18) becomes

20K+ (Kip — Kpo) + (x — 9)(Ki1 + K32)805.]

’
af
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A different practice is followed however in the present paper and in other papers by the
author|[3, 7, 8]. According to such practice, the stress-strain equations are kept always
homogeneous, i.e. the strains are assumed to vanish always with the stresses. Consequently,
the stress-strain equations become inhomogeneous, i.e. vanishing strains (more precisely,
generalized strains) do not correspond to vanishing displacements (more precisely, general-
ized displacements).

We have thus, instead of (3.6) and (3.7),

u; U,
ei=h4+ai/\0+ei° EaZh’"Faa/\@‘*'an (3.22)
0, 0,
k, = +k° K,=—"4+K) (3.23)
h; h,
- . |e® and k;° L 6 and p°
The intial strains E° and K0 correspond to the initial stresses N° and M,°

through the stress—strain equations (3.16-19). The initial stresses are the stresses which
appear in the body when no external forces are acting.

In the sequel, generalizedt stresses and strains will be assumed always connected by the

stress—strain equations. The association of a strain field and a stress field connected in this
way will be termed simply a field. We remark that the generalized displacements corre-
sponding to a given field are determined, except for a rigid-body motion.
e’ and k°
E, and K/
given displacements prescribed on the boundary, if equations (3.21-23) are satisfied. A field
is said to be equilibrated, with respect to given body forces and given forces applied on the
boundary, if the satisfied equations are (3.3), (3.5) and (3.20). The stress-strain equations
are of course supposed to be satisfied in any case.

A field which is simultaneously a compatible and an equilibrated one is the exact solution
with respect to given initial strains, body forces and boundaries conditions. Kirchhoff’s
theorem states the uniqueness of such solution.

The total potential and the total complementary energy theorems can easily be deduced
from the preceeding equations.

The first one states that the exact solution, with respect to given body forces, initial
strains and boundary conditions, minimizes the total potential energy.

A field is said to be compatible, with respect to given initial strains and

T3:jW,,dV—f(f.u+g.e)dV T2=fWSdS—f(F~U+C-®)dS
4 14 S S
—f(a-u+ﬁ-e)dz —f(N-U+M-@)dr (3.24)
p I

on the set of the compatible fields.
The second one states that the exact solution with respect to ..., minimizes the total

complementary energy.

+ The word * generalized > will be omitted in the sequel whenever the clarity of the text is not affected.
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— x _ *
To* = vay*dV T, LWS ds
o D ICEEARS g - [ SN ES+ M, KOS

Vi S a
-f(c-ii+p-i§)d>: ~ [(N-T+M-Hdr (3.25)

p Y T2

on the set of the equilibrated fields.

* . W,
We remember that the complementary energy zﬂ equals the strain energy WV
S S

because linearity and homogeneity of the stress-strain equations have been assumed.
The fact that 7 and T* are minimized and not simply made stationary is connected to the

stability assumption, according to which g"i is a positive definite function of the strains.
s

If linearity is assumed, as indeed it was, it can be shown[7, 8] that
T —TE) =Ulc—-5)=U*c—3) (3.26)
T*(e) — T*(s) = U¥e —s)=Ule — 3) (3.27)

where ¢ is any compatible field and e any equilibrated field. s is the exact solution. The total
potential and complementary energy theorems immediately result from (3.26) and (3.27).
They are true however even if the stress—strain equations are non-linear.

4. THE TWO-DIMENSIONAL MODEL AS DERIVED FROM THE
THREE-DIMENSIONAL ONE

The set of the three-dimensional elastic fields forms a linear space which will be denoted
by X. So does the set of the two-dimensional fields, which will be denoted by Y. The addition
of two elements in X or Y corresponds to the addition of the corresponding stress and
strain components.

Isocompatible and isoequilibrated subsets can be considered both in X and Y. The first
contain the fields which compatibilize the same incompatibilities.t The second contain the
fields which equilibrate the same external forces.]
isocompatible
isoequilibrated

potential external forces
complementary incompatibilities
is taken for family of continuous functionals. The isominimizing subsets of X are then the
isoequilibrated
isocompatible

From the two different possibilities considered, two different methods arise for the
generation of the two-dimensional model from the three-dimensional one. They will be

subsets may be taken as constrained subsets of X, if the set of the

total energies corresponding to all possible systems of

subsets. The same can be said about Y.

1 A system of incompatibilities is defined by an initial strain field and a system of displacements prescribed
onZ;orI;,
1 An inner-product definition can be introduced in the linear case such that the isocompatible and
isoequilibrated subsets become orthogonal[8]. Such orthogonality will not be used however in the present
paper.
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called the potential energy method and the complementary energy method and will be
simultaneously described in order that their duality becomes more striking.

The three-dimensional body which our discussion basically considers is what we call a
shell. Such body can be analyzed both by the three- and two-dimensional theory, this last
being referred to the middle-surface of the shell.

In the potential
complementary
strains and displacements

stresses and tractions

energy approach the two-dimensional generalized

are defined in terms of the corresponding three-dimensional

strain—displacement

magnitudes in such a way that the two-dimensional oo e
equilibrium

equations and the

two-dimensional boundary conditions on r
1

dimensional theory. Such is for instance what happens if the three-dimensional generalized
strains and displacements measured on the middle surface
stress and traction resultants and couples taken over the thickness
strains and displacements
stresses and tractions
/2

Ea = (e1)§3:0 Na = fwr!z)‘& o, déS (41)

t/2

I .
2] become exact in the frame of the three-

of the shell are taken as

the two-dimensional generalized . We admit therefore?

K, = (kg0 | Mu=|

iHa;é Ao+ p)des (42)
J-i2

U; =W),-0 N = fi;ic dé, (4.3)
12
O =)0 | M=[ Jm&rctwds (49
and ‘
B0 =00 | F=| hifds, .5)

—tf2
W1F2

K =(kp=0 | G=| Ahlastnaf+gds;  (46)
—1/2

In the preceeding equations, ;I denotes the ratio between the scale factor hz at an
arbitrary point of the shell and the scale factor /; at the point of S with the same coordinates
& and &,. A plays the same role, on any surface with an analytical expression of the type
Sy, &) =0, as magnitudes 4, on the coordinate surfaces.

Equations (4.1-4.4) introduce a correspondence between X and Y. By other words, a
linear bounded operator B, is introduced with domain X and range Y, such that any two
elements which are isoconstrained in X are isoconstrained in Y.

Assume now that a new linear operator B, is introduced with domain Y and range X',
X' being a subset of X. Such operator is assumed to have an inverse, i.e. to introduce a
one-to-one correspondence between Y and X',

. potential
1 From now on, the equations at complementary
1 o is equal to 1 when « is equal to 2 and equal to 2 when « is equal to 1.

energy approach.

left
" ghti concern the 1
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Let f be an arbitrary element of X, g its B,-image in Y and f” the B,-image of g in X".

We can write
g =Bi{(f) 4.7

f" = By(9) = B,[B,(/)] = B(f). (4.8)

The product of the two operators B, and B, is thus a new linear bounded operator, B,
with domain X and range X' < X.

potential . . potential
complementary energy method postulates the invariance of the complementary
energies. This means that
Us(Bx(9) = Uy(g) U;*(By(9) = U,*(9) 4.9)
T5(B,(9)) = Ta(9) T3*(By(g) = T2*(9) (4.10)
U; and T, potential . .
where U and T, denote the complementary energies computed in the frame of the
U, and T,

three-dimensional theory, and ’ denote the same magnitude in the frame of

U, and 7T,*
the two-dimensional theory.

Equation (4.9) permits to express the two-dimensional elastic coefficients in terms of the
three-dimensional ones. Indeed, (4.9) implies

LWS dS=fVWVdV

fws* dS:f W, dv (@.11)
S v .
and thus
ti2
Wy =f My Wy &,

t/2

12
We* = / Aydy, W* dE, (4.12)
—-t/2
and this permits to write, with the help of (3.9) and (3.10), the stress-strain equation in
terms of the three-dimensional coefficients. Comparison with the same equations expressed
in terms of the two-dimensional coefficients yields the relations between these last and the
three-dimensional ones.

F.G,Nand M

Equation (4.10) permits to express E°. K°, U and ©

in terms of the corresponding gen-

erating magnitudes.

By virtue of (4.10) the B,-images of the constrained and minimizing subsets of Y are the
constrained and minimizing subsets of X'.

An obvious consequence is that the B,-images of elements in Y are isoconstrained
elements in X', and as the Bj-images of isoconstrained elements in X are isoconstrained
in Y, we conclude that the B-images of isoconstrained elements in X are isoconstrained
elements in X',

If we assume now that the B-image of any element belonging to X’ coincides with the
element itself, all the requirements made in Section 2 for operator B are respected and all the
results established in this section can be applied.

The only point which is still missing is the introduction of a metric in X such that (2.11)
holds. This will be achieved if the distance between two fields is defined as the square-root

of the strain

complementary energy of their difference, i.e.

d(fys f2) =/ Uy, -1) =/ U}, s, (4.13)
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Then indeed (3.26) and (3.27) imply (2.11).
Consider now equation (2.12). According to the definition of distance,

d(s, s') = / [% fV Z (d6; - Se; + Ok, - dpy) dV} (4.14)

where 6 denotes the variation of a magnitude from s to s".
On the other hand,

8F = 6T5(s) OF = 6T3%(s)
= 6U, —f(f-5u+g-5e)dV =6U3*~f Y (60, &° + op, - K) dV
Vv vV i
—f(6-5u+ﬁ-56)d2 «—f(éo‘-éﬁ—{-éu'ﬁ)dE (4.15)
by 2

But

8U, :fvz(“i - de; +p; - 5k;) dV. dU4* =f Y (30, e; + op; - k;) dV. (4.16)
H vV i

Comparing (4.14) and (4.16), and considering that &6 is of the same order is de;, and op;
is of the same order as dk;, if becomes clear that d(s, s') is of higher order than \/ |OF]|.
Equation (2.12) becomes then,

d*(s,s,) < |6F| + |6, F) 4.17)

for very small values of the distances between s and s'.

This means that the distance between s and s,’ tends to zero if the differences between the
potential
complementary

s, , also tend to zero.

In the sequel, s will denote the three-dimensional solution and s," the B,-image of the
two-dimensional solution. For understandable reasons, s will be called the exact solution
and s,’ the approximate solution.

values of the total energy corresponding to s and s’, and between s, and

5. THE THREE-DIMENSIONAL MAGNITUDES AS FUNCTIONS OF THE
THICKNESS

Laws of variation of the three-dimensional magnitudes in terms of the thickness will be
sought now, having in mind that the corresponding two-dimensional magnitudes must not
change when the thickness tends to zero.

The determination of such laws requires the definition of operator B, or, what is the same,
strains

and the three-dimensional
stresses

the choice of the expressions for the three-dimensional

displacements
tractions
It is well known that many algebraic difficulties can be removed if the shell is assumed thin,
i.e. if the magnitudes A, are assumed equal to unity. Thinness will be admitted in the sequel.
Consider a conventional shell, i.e. a shell with coefficients ¥ = y = ¢ = 0 and let ¢, be its
thickness which, for sake of simplicity, is assumed constant all over the middle surface.

in terms of the corresponding two-dimensional magnitudes.




The role of convergence in the theory of shells 543

. . . strains .
Let the expression for the three-dimensional stresses be the following:
eaﬂ = eﬂa
N, 14
= %[Eaﬁ + Eﬂa + 53(Ka A a3 * aﬁ Uaﬂ = O'ﬁa = P 4 -+ lea A a3 ‘ aﬁ;‘%
0 0
+Kpnas-a)] | 5.1)
Na3 3 53 2
€a3 + €34 = EaS Ou3 = t() [5 - 6(?0_) ] (52)
€34 = €43 O34 = Oa3 (5.3)
Aolery + €32)
€33 Zito 33 54

We observe that equation (5.4 left) is equivalent to 635 = 0.
From (5.1-5.4) and the invariance of internal work, we obtain the following expressions

for the two-dimensional Ssir:;slf: in terms of the three-dimensional ones:
to/2 1 to/2
Np=[ ou,de Eg+Ep=—[ (ep+edls  (59)
—to/2 to ~to/2
to/2 1 /2 [3 53 2
N, = 0,5 d E,=— [——6(——)}% + e5,) d&
s=] onds =L 5 6(2) [earends
(5.6)
tof2 12
Mazf 3363/\0!1(153. Ka/\a3'aﬁ+Kﬁ/\a3'aa=—3‘
—to/2 fo
to/2
[ esep+ e dts. (57)
—tof2

We observe that N,; would cease to represent the resultant of stresses o,5 (equation 5.6
left) if strains e,; and e;, were not assumed uniformly distributed in the thickness (equation
5.2 left).

We observe also that, by virtue of the thinness assumption and equations (4.1) and (4.2),
N;, = N,, and M,y = —M,,. This is important for the derivation of equations (5.5-5.7
right).

The expression for the two-dimensional coefficients can be obtained also from (5.1-5.4),
following the standard procedure described in Section 4, i.e. by using equations (4.12), (3.9)
and (3.10).

We obtain:
B = toto H=lot, (5.8)
2uo A
oo g + A o 5.9
- _Hol .5
V= 020 v=l—2u0t0 (5.10)
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_ Hoto® - Hoto
¥ B Y= > (5.11)
ty® 2p0 + 34 po o’
= +/{ _(_)_ T 0 0 H0to
1= o + 4o) > X Ytis 12 (5.12)
=@ =7%=0. T=¢=7=0. (5.13)

Index , indicates that the two-dimensional coefficients refer to the shell with thickness 7, .

Assume now that the thickness of the shell tends to zero. The equations (5.8-5.13) clearly
show that what was already mentioned before, i.e. that the ratio between the bending
stiffness coefficients i and § and the stiffness coefficients 7, 1 and ¥ also tend to zero.
Indeed, the first ones are proportional to 7 and the last ones to ¢. By other words, a conven-
tional shell behaves more and more like a membrane as its thickness tends to zero.

The two-dimensional coefficients cannot be kept constant therefore, as the thickness
tends to zero, unless non-vanishing couple-stresses are admitted in the shell, i.e. unless the
three-dimensional coefficients , y and/or ¢ cease to be zero.

Admitting non-vanishing couple-stresses, equations (5.1-4) must be replaced by

€ap = €ps =¥ Eyp + Eg, + E3(K, A a5 8y _ Ny &
Tk, A a, ) Oup = Opgy = ; + 12nM, A a; - 8, 3
(5.14)
— _Na3 3 63 2
€3 + €34 = L43 Ty3 = P [i - (’;‘) ] (5]5)
p— 4+ wlp+ )
€3, = e, O3, = 00, 5.16
*oturolp-w ? ? (-16)
ey, +
€33 = — —(—-‘-1-2—#—@ 033 =0 (5.17)
M,
kap = Koy top = (1 =) —* (5.18)
ki3 =ky; =0. Wiz = p3; =0. (5.19)

It is admitted in equations (5.14-18 right) that a part of the moment vectors M, is
equilibrated by the stress couples and the remaining part by the couple-stresses. Coefficient 7,
which is assumed equal to one for t = ¢, and equal to zero for ¢t =0, takes care of such
partition.

Equation (5.16 right) reflects the fact that, as it will be shown in Section 6, stresses o3,
must remain bounded as ¢ tends to zero, while stresses o3 are of the order of 1/z. Coefficient
w is thus assumed equal to one for ¢ = ¢, and of the order of t* where a > 1.

In what concerns equation (5.16 left), it results from introducing o3, = wo,; in the
stress—strain equations.

The new expressions for the two-dimensional ssttrrzsiiess which are consistent with (5.14-19)are
" de Epy+ Epy =1 | " )dés  (5.20)
Ny= O, s + Lgy = - e, + €5, .
7] J_ AL Aat 8 pe =), BT 3
t2 1 02 [3 53) 2]
= == [==6{= 3+ €39 d
Nos J‘_‘/l"'as dé, £y p f—tlz [2 (t (ea3 + €34) d&s

(5.21)
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t/2 .
) (“a + as 53 A aa) dfs .

~t/2

M, =

The two-dimensional coefficients become
o= pt

A=At

1w[(l+w)+g(1—w)]

1 t
V=3 1+ o) H

t3
¥ = — + At
b (u+/1)12+

pt?
= t
V=", t¥
F=¢=1%=0.

t/2
Kal\a3'aﬂ+Kﬂ/\a3'a¢=J‘ "
~1

1
[121’] % (e,p + eﬁu) + ;(1 - ﬂ)(ka Aay- aﬂ

+ kﬂ A 33 * aa)] d£3 . (5.22)

i=pt (5.23)
2ul
= 5.24

1 2u+ 4 ! (5:24)

_ 5 ut

v = -

5.25

3[(1+w)2+§(1—w)2] (525

- 1

YT oAin, (- (5.26)
2u 4+ 34 3 " At

1

P T, (5.27)
ut? Yyt

i=¢=1=0 (5.28)

As it was to be expected, expressions (5.8-5.13) are obtained if t =ty and 4y =w = 1.
Equating now the two-dimensional coefficients in (5.8-5.13) and (5.23-5.28), we obtain:

b= o 2
°
4
/1:-/{0—;)
_l—a) tl
P——1+w#oot
t,> 2\ 1
¢=ﬂ°° (1__2)_
12 1,2 1
ty° tz)l
= AV (1 -}
%=+ 0)12( 2] ¢
¢ =0.

Ly
H=o~ (5.29)
Ly
A=ty (5.30)
SR Uil . 531
P—P004_(1+w)zt (5.3
" _#oto3 (1-w? 1
) 121 (5.32)
| (02 7‘
= ot 3k polet (L-m? 1
20 + 4o 12 l_thzt
t2
(5.33)
¢ =0. (5.39)

These equations show that the three-dimensional coefficients are of the order of 1/z.
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The variation of the three-dimensional coefficients with the thickness will be completely
defined only if # and w are given as functions of the thickness. It is interesting to notice that,
if we choose
t2
N=— (5.35)

tO
the expression for i becomes the same in both approaches.

The invariance of internal work, together with equations (5.14-5.19), could give still, for
the second approach, the expressions for the two-dimensional prescribed initial strains.
In the sequel, however, we shall suppose such prescribed initial strains equal to zero.

In order that operator B, be completely defined, expressions for the three-dimensional

displacements . .
tractions must also be given. Adopting

N, £s

Uy =Up+ &0 Ay a, | o,=—+12M 2y 8,3 (5.36)
N3 f3 &y 2]
- =—|5-6{7 5.37
us = U, g p [2 ( t ) (5.37)
M

prescribed tractions

! . obtained from the invariance
prescribed displacements

the following expressions for the

of the external work, are obtained

t/2 1 pt/2
No=[ o, U=~ ads (5.39)
—¢2 t V-2
_ 2 — L2 03 &\
(" 5 = e d 5.40
M= s, o -1 [2 6 ( t) ]u3 & (5.40)
t/2 . t/2 é _
-t/2 —t/2
1
+ ; (1- n)ﬁ] déy  (5.41)

We observe that equations (5.39-5.41 left) are the same as equations (4.3) and (4.4) if,

of course, the thinness assumption is admitted. o
The following expressions for the two-dimensional body force densities in the first
approach can be obtained also from equations (5.36--5.38) and the invariance of external

work:

2
F = J. fdeg, (the prescribed initial (5.42)
~1/2 strains were assumed

G- (" G+a,e,aD)de, | tovanish) (5.43)
—/2
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These expressions coincide also with those given by equations (4.5) and (4.6), once the
shell is admitted to be thin.
Expressions for the three-dimensional body force densities in terms of the two-dimensional

. . . . 5.42 5.43 .
densities, consistent with equations ( @. 5% 223 E 4 6)) are also required. We may choose
F
f=s +12G A a3 (5.44)
G
g=(-7— (3.45)

where y plays a role similar to the role of # in equations (5.14) and (5.18).
Making y = t3/t,°, we obtain

f=F+ 12G A a3é—33 (5.46)
1 fo
_ *\G
- (1 - 703) Z. (5.47)

The important points about (5.46-5.47) is that the body force densities are of the order
of 1/t and its first derivatives with respect to {5 are bounded.
Similar expressions can be established for the tractions:

N £

§= 1M Aa, 2 (5.48)
t T
2\ M
rt=(1 ——-3-)—. (5.49)
1.3) ¢

6. ORDER OF MAGNITUDE OF THE STRESSES

Before any convergence analysis is made, the order of magnitude of the three-dimensional
stresses, strains and displacements is to be compared with the order of ¢.

Conclusions can be drawn from the following points:

(i) As the two-dimensional solution does not depend on the thickness, the energy associated
with such solution remains constant, and thus bounded, as the thickness decreases in-
definitely. We admit therefore that the energy associated with the three-dimensional solution
also remains bounded as ¢ tends to zero, and so remain the three-dimensional strains and
displacements as well as the first derivatives of the displacements.t

(ii) By virtue of equations (5.29-34), the three-dimensional elastic coefficients are of the
order of 71,

(iil) Considering that the three-dimensional body force and moment densitites, T and g,
vary with ¢ according to equations (5.46) and (5.47), there follows that such densities are of
the order of ¢ 1.

(iv) As the faces of the shell are co-ordinates surfaces with equations &, = +1/2, the
stresses 0'5; and p3; must have the same values on the faces as the tractions o; and y; and,
as such values are prescribed, stresses o5; and u;; are bounded for &; = +¢/2.

T We mean, of course, by strains and displacements, both ordinary strains and displacements, as well as
curvatures and rotations.
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It may be concluded from the preceeding remarks that:

(a) All the derivatives of the strains with order higher than the first, and all the derivatives
of the displacements with order higher than the second, are of the order of r.

(b) The stresses o3; and u,; together with all the strains and displacements, the first
derivatives of the strains, the first and second derivatives of the displacements and the
derivatives of the stresses with order higher than the first, remain bounded everywhere in
the shell (are of the order of ¢°).

(c) All the remaining stresses and the first derivatives of the stresses are of the order of 1,7.

Such conclusions are summarized in Table 1.

Table 1. Orders of magnitude of stresses, strains and displacements

Magnitudes
Order
of Stresses
derivatives Strains  Displacements
Oz and po; 03 and us;

0 =1 t° t° 9

1 =t 1 ° t°

2 9 ° t 1
higher than 2 ® t° H t

Let us justify the above conclusions.

In order to show that the stresses are of the order of 1/1, it suffices to remember that the
strains are bounded (see i) and the elastic coefficients are of the order of 1/¢ (see ii).

We are going to show next that the second derivatives of the displacements with order
higher than the second are of the order of 1/z.

Indeed, the equilibrium equations written in terms of the displacements (Navier’s equa-
tions) form an elliptical system of the second order and, according to a general property[9]
of the elliptical equations of this kind, the derivatives of order p + 2 of the unknowns are
of the same order as the pth derivatives of the right-hand sides. As the unknowns are the
displacements and the right-hand sides of the Navier’s equations result from dividing the
body force densities (order 1/t, by virtue of iii) by an elastic coefficient (order 1/¢, by virtue
of ii), there follows that the right-hand sides are bounded and, therefore, that the second
derivatives of the displacements are also bounded. On the other hand, as all the derivatives
of the body force densities are bounded, the derivatives of the displacements of order higher
than the second are of the order of ¢.

Now, as the seond derivatives of the displacements are bounded, and the initial strains
vanish, the first derivatives of the strains are bounded and the first derivatives of the stresses
are of the order of 1/t.7 As the derivatives of the displacements with order higher than the
second are of the order of ¢, so are the derivatives of the strains with order higher than the
first, the corresponding stress derivatives being bounded.}

Finally, as the stresses o3; and u,; have bounded values for ¢; = 1 ¢#/2 (see iv), and the
first derivatives of the stresses are of the order of 1/¢, there follows that such stresses are
bounded for any value of ¢4 or, which is the same, everywhere in the shell.

t Because the elastic coefficients are of the order of 1/¢ (see ii).
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7. CONVERGENCE ANALYSIS
The distance between s and s,” depends on 8F and §, F (see equations 4.17).
Let us consider first the expression of dF.

5F=5U3—j (- ou+g-o0)av 5F=5U3*—f Y (b6, &° + op; KO dV
|4 Vi

-j & ou+f-60)dT —j(ac-a—au-ﬁ)dz (7.1)
I I

where

8U, = LZ(G,- cde;+p, - ok)dV | SU,* =fyz(aa,.-ei+ op;-k)dv. (12)

5 denotes variations from the exact solution s to its B-image s', or, which is the same, to
displacements and strains on the middle surface
resultants and couples taken on the thickness
(see equation 4.1-5). Denoting by a prime the magnitudes corresponding to s', we can write

the allowed field which presents the same

¢, (0) =¢,(0) N, =N,/ (1.3)
k(0) =k,/(0) | M,=M,/ (7.4)
u(0) =v'(0) N=N (7.5
0(0) = 6'(0). M=M. (7.6)
Expanding the :::j;;ss corresponding to s and s” in a power series, we obtain
e,(&3) =€, (0) + &3¢, 3(0) + -~ 6,(&3) = 6,(0) + &30, 5(0) + -+ (7.7
k,(£3) =k (0) + &3k, 5(0) + - R(E3) = Ba(0) + S3mg, 3(0) + -~ (7.8)
e/ (%) =¢/(0) + e, 50+ | 6,(5) =0,/(0) + &30, 5(0) + - (7.9)
k') =k 0 + &Kk 0+ | m'(E) =/ O+ &u 0+ (7.10)
As the derivatives of the strains with order higher than the first are of the order of t,
stresses bounded

the terms ommited in the expressions (7.7) and (7.8) are certainly of higher order than the
constant term and the linear term.

In what concerns expressions (7.9) and (7.10), it must be remembered that s’ belongs to
X’ and that all the fields belonging to X’ can be expressed by equations (5.14-19). Therefore,

the derivatives of order higher than the first of i“f, zgg ﬁ“f, vanish.
t[{Introducing (7.7-7.10 right) into (4.1) and (4.2), (with 1, = 0), we obtain

N, = ¢6,(0)¢ (7.11)

t3
Ma = ua(o)t + a3 A 0';, 3(0) —l—é (712)

- + higher order terms.

N, =6, ()t ‘ (7.13)

t3
M, = p,/(0)t + a; A o 3(0) - (7.14)

t The part of wae text within brackets concerns exclusively the complementary energy method.

1SS Vol. 10 No. 5--F
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As the first derivatives of the stresses are of the order of 1/ (see Section 6 and equation
5.14-19), there follows that (7.12) and (7.14) can be transformed into

M, = p(0)t + higher order terms (7.15)
M, = p, (0}t + higher order terms. (7.16)
Equations (7.3) and (7.4) (right) are thus equivalent to
¢,(0) =¢,'(0) (7.3)
1(0) = p,'(0) (7.4)
if higher order terms are neglected.]
Subtracting (7.9) from (7.7) and (7.10) from (7.8), and considering (7.3) and (7.4) there
’ (7.3') and (7.4°)
results
oe, = {3 0e, 3(0) + -+ 06, = 300, 3(0) + - (7.17)
Ok, = &30k, 3(0) + -+ | Op, = E30m, 5(0) + (7.18)
Considering (7.17) and (7.18), and neglecting terms of higher order, we can write
t/2 t/2
[ de+m-okyde, | [ (o, e, + o, k) des
-1/2 ~1/2
t/2 t/2
> [ & de, 5(0) d&;. ~ [ &60,50) e, dt,.  (1.19)
—t/2 ~t/2
strains strains are bounded

Therefore, as the
stresses

(see Section 6 and equations 5.14-5.19),

stresses are of the order of 1/¢

‘ and the first derivatives of the

t/

/2 2
[ (0 de,+ 1, 0k) A5 =0(). | [ (36, e, + 0, k) dE; =0, (7.20)
~t/2 —t/2

As, on the other hand, by virtue of the stresses o3; and uj; and the corresponding strains
being bounded, both in the exact solution and in its B-image (see Section 6 and equations
5.14-5.19). "

Gy 0ey + Wy 0ky | O0y ey +ps ks (7.21)

is bounded, so that we can write

SU, = fv Y (6;- 6e;+p; - 0k) AV =0(1). | SU* =fV Y. (60, - & + op; - k) dV = 0(1).
(7.22)

The same kind of reasoning can be repeated for the other terms in oF, leading to the
conclusion that dF is of the order of t.
Let us consider now o, F.
compatibilizes the same incompatibilities
equilibrates the same external forces
Such a field can easily be constructed. We can take for instance as three-dimensional
strains and displacements|
stresses and tractions

s, is simply a field which as the exact solution.
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e, =E, o, =7 (7.23)

k=K, | n= MT (7.24)

0=U | p= ? (1.25)

0=0 | o= (7.26)

where 15‘:” 15[”; ’, IJ{/zI;(cll (;I are the two-dimensional Str;ig:;gi:?i’i:ﬁggﬁgts‘ corresponding

to the approximate solutions.

strain—displacement

Introducing (7.23-7.26) into the three-dimensional equations, we

equilibrium
obtain
1
ei = U, i + ai A @ ;‘z (h&Nd)m + (h1h2 63),3 + hlhzf = 0
(7.27)
1
k; = ®,i' ;Z [(hs Mu),a + hohya, AN
+ (htha U3) 3 + My 83 A 03 + A, § =0
(7.28)

strain—displacement
equilibrium
equations (7.27) and (7.28) reduce simply to

As the two-dimensional ‘ equations are satisfied and the shell is thin,

F
e;=a, A0 03,3=;—f (7.29)
G _
k3=0 ".3,3—8.3/\63:7'—9 (730)
e; and k;

Equations (7.29) and (7.30) permit to obtain such that the three-dimensional

65 and ps
strain—displacements
equilibrium
Such vectors and the ones expressed by (7.23) and (7.24) define completely the field s, .

The evaluation of §, F can be made exactly as the evaluation of dF, and the conclusion
can be drawn that

equations are fulfilled.

O, F =0(1). (1.31)
Then, by virtue of (4.17),
d(s, s,y = 0(t1/?) (7.32)

and this means that the exact solution converges to the approximate solution as the thickness
tends to zero.
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8. CONCLUSIONS

The present paper may be seen under two different points of view: either as just a paper
on shells, or as one step more towards the constitution of what may be called a mathematical
theory of structures.

Let us consider the first point of view.

A comprehensive discussion on the foundations of the theory of shells was recently
presented by Naghdi[10] who indicates as the main problems of the theory of shells:

(a) The development of a two-dimensional theory.

(b) The development of a scheme or a systematic procedure for estimating the error
involved in the use of such theory.

Naghdi mentions that his paper is mainly concerned with the first problem, and not with
the second, for which an explicit answer has not been available.

The present paper can be seen as a contribution for the solution of the second problem.
It provides indeed a simple but powerful method for testing the efficiency and consistency
of any particular theory of shells whose equations can be established according to one of
two ‘dual procedures. Such procedures which, in the text, are called the potential energy
and the complementary energy approaches, do not represent really more than a formaliza-
tion of the energy approaches popularized by Reissner[l1] in his paper about beams,
plates and shells.

The method was exemplified by applying it to the theory of thin shells, Other approxima-
tions can be tested in a similar way and the order of magnitude of the distance between the
approximate and the exact solutions can tell us about their efficiency. In the case of the
thin shell approximation such distance was seen to be of the order of /1.

Consistency requires that all the terms in F and J, F are of the same order. If they are
not, this means that the approximation of the magnitudes involved in the higher order
terms is unnecessarily high, or that the approximation of the remaining magnitudes is too
fow.

For instance, if the distribution assumed for stresses g;; is such that equilibrium with the
tractions actually acting on the faces is ensured, i.e. if stresses o;; take the prescribed
values for &5 = +1¢/2, then, the corresponding terms in dU are of the order of r* and not of
the order of ¢. The global accuracy is not increased however if the expressions for the
remaining stresses are the ones given in the paper, because the corresponding terms in §U
are of the order of 7.

As the proposed test is based in examining what happens when the thickness tends to
zero, it may be argued that it seems not very logical to examine the value of a theory intended
for thick shells, for instance, by seeing what happens when the thickness decreases in-
definitely.

The determination of the order of magnitude of the distance in terms of the thickness
gives however a good way of evaluating the speed of convergence, and the higher the speed
of convergence, the higher the values of the thickness for which the same distance between
the approximate and the exact solution, i.e. the same error, is reached.

In what concerns the second point of view, it must be remembered that convergence
analyses have been made for discrete theories generated by the finite element technique,
and convergence theorems were presented for the whole theory of structures and even for
variational methods in general[3, 5,7, 8.

On the other hand, the role of such theorems in the theory of structures was recognized
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and the way in which they should be applied for the justification of continuous theories was
indicated.

The idea of such application was however not materialized before the present paper,

and the fact that the same kind of analysis which has been successfully applied to discrete
models is now applied to continuous ones represents a step forward towards the con-
struction of a general mathematical theory of elastic structures.
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A6crpakT — [1ono6HBIM 06pa30M K 3TOMY, YTO IPOMCXOMUT B METOAE KOHEYHOTO 3JIEMEHTA,
MOXHO NPHHATH IOHATHE CXOAMMOCTH, [J15 IONTBEPXKIACHHS NIPaBa OJTb30BAHMS JIPHHLHMIOM
BHPTYanbHO# paGoTsl M BapHALMOHHBIME TEOPEMAaMHW, B LENbIO ONPEIC/ICHHS YypaBHEHWI
TEOPHUH 00O0NOYCK.

Oxa3biBactcs, 4TO JABYXMEPHOE penieHue NpuGmmkaercsa Goyiee H Gosiee K TpeXMEPHOMY,
€CIM TOJIMHA CTPEMHTCS K HYNBIO, TIPH YCIOBUM, YTO OTHOCHTENbHbIE 3HAYEHUA KOI(du-
IHMEHTOB M3ruOHOH ¥ MeMOpaHHOM JKECTKOCTH He M3MEHSFOTCS, KOraa 0607109Kka IpHHHMAET
BUJ Goniee TOHKOIA.

Taxoe ycriose MOXHO yUUTBIBATE TOJIBKO AJIA Cliydast 0GOOMIEHHOH 0BOIOYKH, T. €. eCly
HOPEAONAraeTcs, YTO MOMEHTHbBIE HANPAKEHMS He HCYe3at0T.

AHanus onpeAenseT BEPXHEI IPeIeN OTHOCHTENBHO Pa3Mepa IIPOMEXYTKA MEXAY TOUHBIM
PELIEHMEM U IIPUOCITXEHHBIM. DTO SBIIAETCS MOLIHBIM OPYIUEM [Jis MCCIenopants bhexTup-
HOCTH ¥ COBMECTHOCTH 1000 4acTHOM Teopum oBomnodek.



