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Abstract-Similarly to what happens in the finite element method, the concept of convergence
can be used for justifying the use of the virtual work and variational theorems in the derivation
of the equations of the theory of shells.

It is proved that the two-dimensional solution becomes more and more near the three
dimensional ones as the thickness tends to zero, provided the relative values of the bending
and membrane stiffness coefficients are not changed when the shell becomes thinner and
thinner.

Such condition can be respected only if the shell is a generalized one, i.e. if the couple
stresses are not supposed to vanish.

The analysis gives a upper bound to the order of magnitude of the distance between the
exact and approximate solution and thus provides a powerful method for testing the efficiency
and consistency of any particular theory of shells.

1. INTRODUCTION

Although the theory of shells is usually presented as resulting from the three-dimensional
model provided by three-dimensional elasticity, it is well known that a direct approach is
possible, i.e., that the shell equations can be established without referring to the three
dimensional theory.

The three-dimensional model is privileged however, not because it is more consistent in
itself, but because it is believed to provide a better simulation of the mechanical behaviour
of solid bodies. For this reason, and not for any other, it is usually regarded as the funda
mental model which generates all the others.

Direct approaches for the derivation of shell equations have thus been disliked by most
specialists in the field. Indeed, although they can provide the right equations, they say
nothing about the connexion between such equations and the three-dimensional ones.

Mathematicians have therefore preferred to derive the shell equations from the three
dimensional model, by introducing approximative assumptions, and a great deal of re
search[l, 2] has been inspired by the wish of improving and controlling such approximation
procedure.

Energy methods have also been neglected by many researchers because, in the past, they
have been presented practically as direct methods, in the sense that the connexion between
the solutions they lead to and the corresponding three-dimensional solutions has not been
conveniently investigated. In other words, the virtual work principle and variational
theorems have been used, but such use has not been justified.

t Professor of Civil Engineering, Technical University of Lisbon.
t Paper presented at the 13th International Congress of Theoretical and Applied Mechanics, Moscow,

August 1972.
§ The research reported in this paper was supported by Instituto de Alta Cultura (Projecto TLE/4), Lisbon.
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The need for a justification was felt more strongly when the energy methods started to be
used in the generation of discrete models, with the help of the finite element technique, as it
became quite clear that such discrete models were to be discarded if the sequences of
approximate discrete solutions obtained by considering successive subdivisions of the body
into finite elements with indefinitely decreasing dimensions did not converge to the exact
solutions.

The criterion of the convergence to the exact solution was not new however: it has indeed
been considered as the fundamental one to be respected by any other approximate method
of mathematical analysis like the Ritz method and the finite difference method.

In a previous paper by the author[3], the mathematical theory of structures was presented
as a hierarchic collection of models successively generated with the help of two general
methods which were justified by theorems of convergence.

In such synthetic vision the theory of shells appears as a two-dimensional approximate
model generated from the three-dimensional one, and the convergence concepts and
theorems must be used in order that it can be declared as a valid approximation.

The situation is however not quite the same as in the cases considered above. In such
cases, indeed, a sequence of approximate solutions must converge to the exact one. In the
theory of shells, however, what must be appreciated is the convergence of a sequence of
three-dimensional solutions to a two-dimensional solution, i.e. the convergence of a sequence
of exact solutions to the approximate one.

The important point indeed is to prove that the two-dimensional solution becomes more
and more near the corresponding three-dimensional ones as the shell becomes thinner and
thinner, provided the relative values of the bending and membrane stiffnesses are not
changed when the thickness tends to zero.

Such condition cannot be respected in a classical shell in which the bending moments
result merely from the ordinary stresses distributed in the thickness t, because the bending
stiffnesses are then proportional to t 3 and the membrane stiffnesses simply to t. But it can be
respected in a generalized shell[4] in which the couple-stresses are not supposed to vanish.

In the present paper, some general concepts and results presented in previous papers are
first reminded and the three- and two-dimensional models are then described independently
of each other. Two general approaches for deriving the two-dimensional model from the
three-dimensional one are finally considered and the application of convergence analysis is
exemplified as applied to both approaches.

2. SOME GENERAL CONCEPTS AND RESULTS

As the present paper is essentially concerned with the variational derivation of the theory
of shells, a general theory of variational methods will be needed which was developed in
another paper by the author[5]. The main topics of such theory will be summarized in this
section.

The theory considers a variational problem consisting in the minimization of a given
functional F on a space X, and an approximate solution sa' to such problem obtained from
the minimization of functional F on a subspace X' of X. Its main result is inequality (2.12)
which provides an upper bound for the distance between the approximate solution, sa', and
the exact solution, s.

Let X be a Banach[6] space and let ff denote a family of continuous functionals on X.
Assume that each functional of the family admits a proper global minimizer in each

subset of a certain class of subsets of X, called constrained subsets of X. This means that
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each constrained subset C c X contains an element S such that

F(s) < F(c)
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(2.1)

where c denotes any element in C distinct from s.
The constrained subsets are assumed to be homeomorphic to a certain subspace of X

and the union of all the constrained subsets is assumed to coincide with the whole space, X.
Let us consider now, for each functional F of the family !F, the set of all the proper global

minimizers corresponding to all the constrained subsets of X. We call such set the minimiz
ing subset of X corresponding to F and assume the family !F to be such that the union of
all the minimizing subsets corresponding to all the different functionals of!F coincides with
the whole space, X.

The intersection of each minimizing and each constrained subset is assumed to contain
one, and no more than one, element.

Two elements belonging to the same constrained (or minimizing) subset are called
isoconstrained (or isominimizing) elements.

Let now B be an operator with domain X and range X', X' denoting a subspace of X.
Considering the definition of operator, a unique element in X' must correspond to each
element in X, although more than one element in X may correspond to each element in X'.
Operator B is assumed:

(i) bounded and continuous,
and such that

(ii) The B-image of any element belonging to X' coincides with the element itself, i.e.

B(e) = e if e is an element of X', (2.2)

(iii) constrained and minimizing subsets, meeting the same requirements as those in X,
can be defined in X', with respect to the same family of functionals, !F,

(iv) the B-images of isoconstrained elements in X are isoconstrained elements in X',
although not necessarily in X.

The constrained subset C' of X' which contains the B-images of the elements of a given
constrained subset C of X is said to correspond to C.

A given minimizing subset D' of X' is said to correspond to a certain minimizing subset
D of X if they both correspond to the same functional FE !F.

A second operator, A, can thus be considered, also with domain X and range X', which
makes the intersection of each constrained and each minimizing subset of X correspond to
the intersection of the corresponding constrained and minimizing subsets of X'.

Operator A is assumed also bounded and continuous, just like B, and also such that

A(e) = e if e EX'. (2.3)

The A-image of an element eof X is called the approximation of e in X'.
We remark that the A-images of any two isominimizing elements of X are isominimizing

elements of X'. On the other hand, the A-images of any two isoconstrained elements of X
are also isoconstrained elements of X'.

Let now s be an arbitrary element in X, s' the B-image of s and sa' the A-image of s.
s' and sa' are clearly isoconstrained in X'. The situation is symbolically represented in Fig. 1.

Let C be the constrained subset of X which contains s. Let C be the corresponding
constrained subset of X'. s' and sa' are both contained in C.

It is assumed that an element Sa exists in C such that sa' is the B-image of Sa .

IJSS Vol. 10 No. 5-E
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Fig, I.

Let now s be contained in the minimizing subset of X corresponding to functional F.
This means that, by virtue of (2.1),

F(s) <e F(s.). (2.4)

On the other hand, as s.' is the A-image of s, s.' belongs to the minimizing subset of X'
which also corresponds to F, and therefore

F(s.') <:: F(s').

Let now

bF = F(s) - F(s')

b.F = F(s.) - F(s.').

Introducing (2.6) and (2.7) in (2.4), there results

F(s') + bF - b. F <:: F(s.').

Combination of (2.8) with (2.5) yields

F(s') + bF - b. F <:: F(s.') <e F(s').

Therefore,

F(s') - F(s.') <e IbFI + Ib. Fl·

We assume now that a metric can be introduced in X such that

F(s') - F(s.') = d 2(s, s.').

Combining the triangular inequality with (2.10) and (2.11), there results

des, s.') <e des, s') + d(s', s.') <e des, s') +J IbFI + Ib. Fl.

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

Inequality (2.12), which gives an upper bound for the distance between any element in X
and its approximation in X', will become in the sequel the base of our discussion.

3. THE THREE- AND TWO-DIMENSIONAL MODELS

No difficulty appears in the derivation of the two-dimensional theory if no attempt is
made for connecting it with the three-dimensional one.

A complete duality can even be established between the equations of the three- and
two-dimensional models and their derivations, if such models are chosen to be the three
and two-dimensional Cosserat theories, and not merely the classical Theory of Elasticity
and the theory of shells, which result from the first ones if the couple stresses are assumed to
vanish.
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Simultaneous independent descriptions of Cosserat's three- and two-dimensional linear
theories are presented in this section.

\
threel' . 1 d l' "d Ithreel d' . 1 d . IVI .hThe two -dlmenslOna mo e IS relerre to a two - ImenSlOna omam S Wit

boundary I~\.

A system of orthogonal co-ordinates I~l¢l~Z~z~31 is considered in I~I·
Let \r: :~~ ~I (generalized traction vectors) denote the resultant force and moment

. Iarea If' \surfacel . d' IVI L d h'vectors per umt length 0 a given line contame m S· et v enote t e umt vector

normal to such 11' dsurface t t sl· Lett IN(Ji andd
M
Ji i I(generalized stress vectors) denote

me an tangen 0 a an a

the resultant force and moment vectors associated with the co-ordinate lines.

The equilibrium conditions for an infinitesimal \tetr~hedronl bounded by
tnangle

I
~' and three orthogonal co-ordinate surfacesjl d h 'l'b . . +, . . ea to t e eqUi Inurn equahons+r and two orthogonal co-ordmate lines

(J=I(JiVi N=INava (3.1)
i

Ji=IJiiVi'
i

(3.2)

Considering the force equilibrium of an arbitrary fragment of the body, we obtain, with
the help of the divergence theorem, the first equilibrium field equation

~ (H t.) .+ Hf = 0 I I (H N
a
) + HF = 0

~ I ,I a ha.a:

where hi denotes the scale factor along the co-ordinate line i and

H=h1hzh3 • H=h1hz ·

Considering moment equilibrium, we obtain the second equilibrium field equation

(3.3)

(3.4)

Ifandgl' IVIwhere F and G are the generalized body force and moment densities on S.

The strain-displacement equations

~[(H~).i +Hail\(Ji]+Hg=O I ~H[(~a).a +HaaI\Na]+HG=O.

(3.5)

u·
e· = ~ + a· 1\ 9

I hi ' (3.6)

(3.7)

t Latin indices are supposed to take-up values 1, 2 or 3, while Greek indices can take-up the values 1 and 2.
+ ,Threel d' . I' . I left I+ two - ImenSlOna equations are wntten at right.
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can be established by combining the equilibrium equations (3.1), (3.2), (3.3) and (3.5) with
equation

f. 4: (cr i • ei + Ili . k;) dV
v 1

= t(f. u + g. 9) dV

+ Il:'(cr . u + Il . 9) dI:

I I (Na . E a + M a . Ka) dS
S' a

= J (F . U + G . 0) dS
S'

(3.8)

which expresses the work principle written for an arbitrary fragment I~l with boundary

I~:I of the body. The vector fields involved in (3.8) are of course supposed to admit the

derivatives involved in (3.3), (3.5), (3.6) and (3.7).
We could also start from (3.6) and (3.7) and derive the equilibrium equations with the

help of (3.8).

Constitutive equations can be found now by making the strain energy density on I~: ~;I,

I . f' Ie· and k'lan exc USIve unctIon of vectors E~ and K
a

•

Let indeed the components of vectors jN
cr

i 'Mlli ' eEi anddkKi Ibe denoted by
CX' '%' a an a

I
(Jij' J1.ij' eiJ and kij I.

N aj , M aj , E aJ and K aJ

The stress-strain equations have then the form

awv aws (3.9)(JJi = -a- N·=-
eji

al aE
ai

awy aws (3.10)
J1.ji = ak .. M ai = aK·

Jl al

It is easy to conclude from (3.1) and (3.2), and from the invariance of internal work that

I
(J .. J1. .. e·· and k·· I Ithree-dimensionall'J' 'J' IJ IJ are components of second-order .. tensors

NaP' MaP' Eap and Kap two-dImenSIOnal
[and that N a3 , M a3 , Ea3 and Ka3 are components of vectors].t

If isotropy is assumed onI~I, then, I~;I must be an exclusive function of the fundamental

invariants of such strain tensors and vectors.
As linearity is assumed, the only invariants which can be involved are the first and second

invariants of the symmetric parts of tensor I~~I, the second invariant (the first always

vanishes) of the skew-symmetric part of the same tensor, [the invariant of vector Ea3 (its
length)], i.e.

t The parts of the text which concern exclusively the two-dimensional model are within brackets.
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(3.14)

(3.13)

(3.12)

(3.11 )

1(E12 + E21 )\

E22

!(E12~ E21 )1

E=E11 +E22

E' =1 Ell
s 1(E12 + E21 )

E' =\ 0a !(E21 - E12)

E3 = E13
2 + E2 /

k '\ . Ik .. \Ka' of the curvatures K~j'

1(e23 + e32)1 + ...
e33

!(e23 ~ e32)! + ...

Ws = 1(.4 + 2ji)E2
- 2jiE/ - 2pEa'

+ vE3 + 1(iP + 2lfi)K2
- 2lfiK.'

- 2iKa' + ik 3 + 1iEK (3.15)

The term proportional to I;~I disappears however if it is assumed that no changes of

curvature are possible when the components of vectors I:iJ vanish everywhere.

The stress-strain equations for the linear case become thent

d· . . Ik, k.' and
and the correspon mg mvanants K, K/ and

The strain energy density has thus the form

Wy = 1(A + 2Jl)e2 - 2Jle/ - 2pea'

+ !(</> + 2tjJ)k2
- 2tjJk/ - 2Xka' + 'Trek

(Jij = Jl(eij + ej;) + p(eij - ejJ

+ Aebij

NaP = jie(Eap + Epa) + p(Eap - Epa)

+ J.Ebap (3.16)

(3.17)

Jlij = tjJ(kij + k ji) + X(kij - k ji)

+ </>kbij

MaP = lfi(Kap + Kpa) + X(Kap - Kpa)

+ iPKbap (3.18)

(3.19)

(3.20)

(3.21)

Equations (3.1), (3.2), (3.5), (3.16-19) must be supplemented by the boundary conditions

N=N'}
M =M on r 1

u=U}
0= e on r 2

In the current literature, the state of the structure free from external forces is usually
taken as the underformed state of the structure, with respect to which strains and displace
ments are measured. If this is done, and initial stresses are present, the stress-strain equations
cease to be homogeneous while the strain-displacement equations are always homogeneous.

t [Components M.~ and K.~ are usually replaced by M~~ and K~~ related to M.~ and K.~ by

M.P' = M •. a3 II a~

K./ = K•. a3 II a~

In terms of such magnitudes, equation (3.18) becomes

M~~ = 2;jJK~~ + -(K~~ - K/J.) + (x - if,)(K[l + K;2)8.~.1
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A different practice is followed however in the present paper and in other papers by the
author[3, 7, 8]. According to such practice, the stress-strain equations are kept always
homogeneous, i.e. the strains are assumed to vanish always with the stresses. Consequently,
the stress-strain equations become inhomogeneous, i.e. vanishing strains (more precisely,
generalized strains) do not correspond to vanishing displacements (more precisely, general
ized displacements).

We have thu~, instead of (3.6) and (3.7),

n,i 0
e· = - + a· /\ 9 + e·

l hi t t

9·
k. =~+ko

, hi I

u ~ °E =-' +a /\0+E
~ h~ ~ ~

(3.22)

(3.23)

I
e;o and k i

O I . .. I (J;o and f1i
o I

The intial strains E~° and K~° correspond to the mltlal stresses N~° and M~°
through the stress-strain equations (3.16-19). The initial stresses are the stresses which
appear in the body when no external forces are acting.

In the sequel, generalizedt stresses and strains will be assumed always connected by the
stress-strain equations. The association of a strain field and a stress field connected in this
way will be termed simply a field. We remark that the generalized displacements corre
sponding to a given field are determined, except for a rigid-body motion.

A fi Id . 'd b 'bl' h .. .. I . Iei
o

and k i
O I de IS Sal to e compatl e, Wit respect to given IllltIa strams E~° and K~° an

given displacements prescribed on the boundary, if equations (3.21-23) are satisfied. A field
is said to be equilibrated, with respect to given body forces and given forces applied on the
boundary, if the satisfied equations are (3.3), (3.5) and (3.20). The stress-strain equations
are of course supposed to be satisfied in any case.

A field which is simultaneously a compatible and an equilibrated one is the exact solution
with respect to given initial strains, body forces and boundaries conditions. Kirchhoff's
theorem states the uniqueness of such solution.

The total potential and the total complementary energy theorems can easily be deduced
from the preceeding equations.

The first one states that the exact solution, with respect to given body forces, initial
strains and boundary conditions, minimizes the total potential energy.

T3 = f WydV - f (f. u + 9 .9)dV
y y

- J(0 . u + Ji . 9)d:E
1:,

T2 = JWs dS - J(I<' . U + G . 0)dS
s s

- J(N' . U + M . 0)dr (3.24)
f 1

on the set of the compatible fields.
The second one states that the exact solution with respect to ... , minimizes the total

complementary energy.

t The word" generalized" will be omitted in the sequel whenever the clarity of the text is not affected.
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T3* = LWv*dV

- r L(O';' e;O + fl; . k,o)dV
Jv ;

- f (0' . ij + fl . ij)d1:
1:2

- f L(N,,' E"O + M,,' K"O)dS
s "

i (N .U + M . H)dr (3.25)
r2

on the set of the equilibrated fields.

We remember that the complementary energy 1::::1 equals the strain energy 1:::1
because linearity and homogeneity of the stress-strain equations have been assumed.

The fact that T and T* are minimized and not simply made stationary is connected to the

stability assumption, according to which I::\ is a positive definite function of the strains.

If linearity is assumed, as indeed it was, it can be shown[7, 8] that

T(c) - T(s) = U(c - s) = U*(c - s)

T*(e) - T*(s) = U*(e - s) = U(e - s)

(3.26)

(3.27)

where c is any compatible field and e any equilibrated field. s is the exact solution. The total
potential and complementary energy theorems immediately result from (3.26) and (3.27).
They are true however even if the stress-strain equations are non-linear.

4. THE TWO-DIMENSIONAL MODEL AS DERIVED FROM THE
THREE-DIMENSIONAL ONE

The set of the three-dimensional elastic fields forms a linear space which will be denoted
by X. So does the set ofthe two-dimensional fields, which will be denoted by Y. The addition
of two elements in X or Y corresponds to the addition of the corresponding stress and
strain components.

Isocompatible and isoequilibrated subsets can be considered both in X and Y. The first
contain the fields which compatibilize the same incompatibilities. t The second contain the
fields which equilibrate the same external forces.t

IisocompatibleI "The . 'l'b t d subsets may be taken as constramed subsets of X, If the set of theIsoeqUl I ra e

I potential I' . .' Iexternal forces jtotal I t energIes correspondmg to all pOSSible systems of . 'b'l' .comp emen ary mcompatl I ItIes
is taken for family of continuous functionals. The isominimizing subsets of X are then the

l i~OeqUilibrt~bteldl subsets. The same can be said about Y.
Isocompa I e

From the two different possibilities considered, two different methods arise for the
generation of the two-dimensional model from the three-dimensional one. They will be

t A system of incompatibilities is defined by an initial strain field and a system of displacements prescribed
on ~2 or r 2 •

t An inner-product definition can be introduced in the linear case such that the isocompatible and
isoequilibrated subsets become orthogonal[81. Such orthogonality will not be used however in the present
paper.
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called the potential energy method and the complementary energy method and will be
simultaneously described in order that their duality becomes more striking.

The three-dimensional body which our discussion basically considers is what we call a
shell, Such body can be analyzed both by the three- and two-dimensional theory, this last
being referred to the middle-surface of the sheIl.

I
potential I . .. .In the I t energy approach the two-dImenslOnal generalIzed

comp emen ary

\

strains and disPlacementsl' .. .
t d t t

· are defined In terms of the correspondmg three-dImensIOnal
s resses an rac IOns

, d' h h h d' . Ilstrain-disPlacementi .magllltu es m suc a way t at t e two- ImenSlOna 'l'b . equatIOns and theeqUlI num

two-dimensional boundary conditions on I~~l become exact in the frame of the three

dimensional theory. Such is for instance what happens if the three-dimensional generalized

I
strains and displacements measured on the middle surface I f h h II k

. .. 0 t e s e are ta en as
stress and tractIon resultants and couples taken over the thIckness

.. . Istrains and diSPlacements/ .the two-dImensIOnal generalIzed t d t' . We admIt thereforets resses an ractlons .
I t/Z

Ea = (ea)'3=O Na = I 1."lTa d~3 (4.1)
-t/Z

t/Z

K a = (ka)'3=O M a r Aia3~3 /\ Ga + It,,) d~3 (4.2)
• -t/Z

t i ,)

Vi = (U,)'3=O N rl~ AlTd~3 (4.3)
• -t/Z

t/Z

8 i = (9J,,=o M I 2(a3 ~3 /\ G + It) d~3 (4.4)
-t/2

and
,..i/2

Eao=(e",o)';3=O F=J A1Az fd(, (4.5)
-t/Z

,t/Z

K",O = (k",o}'3=o G = ttlZA1Az{a3 ~3 /\ f + g) d~3 (4.6)

In the preceeding equations, A"t denotes the ratio between the scale factor h" at an
arbitrary point of the shell and the scale factor h" at the point of S with the same coordinates
~1 and ~2' Aplays the same role, on any surface with an analytical expression of the type
f(~l' ~2) = 0, as magnitudes A", on the coordinate surfaces.

Equations (4.1-4.4) introduce a correspondence between X and Y. By other words, a
linear bounded operator B1 is introduced with domain X and range Y, such that any two
elements which are isoconstrained in X are isoconstrained in Y.

Assume now that a new linear operator Bz is introduced with domain Yand range X',
X' being a subset of X. Such operator is assumed to have an inverse, i.e. to introduce a
one-to-one correspondence between Y and X'.

, Ileft I I potential I ht From now on, the equations at right concern the complementary energy approac .

:j: ~ is equal to 1 when et is equal to 2 and equal to 2 when et is equal to I,
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Let f be an arbitrary element of X, g its B1-image in Y and f' the B2-image of g in X'.
We can write

g = B1U)

f' = Big) = B2 [B1(f)] = BU)·

(4.7)

(4.8)

The product of the two operators B1 and B2 is thus a new linear bounded operator, B,
with domain X and range X' eX.

\
potential 1 .. \ potential IThe energy method postulates the mvanance of the I t

complementary comp emen ary
energies. This means that

U3(Big» = Uig) I U3*(B2(g» = U2*(g) (4.9)

T3(Bz(g» = T2(g) T 3*(B2(g» = Tz*(g) (4.10)

Iu and T31 I potential I' . h f hwhere 3 d T * denote the I energIes computed III t e rame of t e
U3* an 3 comp ementary

three-dimensional theory, and 19:* :~~ {;\ denote the same magnitude in the frame of

th.. two-dimensional theory.
Equation (4.9) permits to express the two-dimensional elastic coefficients in terms of the

three-dimensional ones. Indeed, (4.9) implies

(4.11)

and thus
t/z t/2

Ws J AI AZ Wv d~3 Ws* =J A1 A2 Wv* d~3 (4.12)
-~ -~

and this permits to write, with the help of (3.9) and (3.10), the stress-strain equation in
terms of the three-dimensional coefficients. Comparison with the same equations expressed
in terms of the two-dimensional coefficients yields the relations between these last and the
three-dimensional ones.

E . (4 0)' IF, G, Nand M \ . f h d'quatlon .1 permIts to express 'Eo, KO, U and E> m terms 0 t e correspon mggen-

erating magnitudes.
By virtue of (4.10) the Bz-images of the constrained and minimizing subsets of Yare the

constrained and minimizing subsets of X',
An obvious consequence is that the Brimages of elements in Yare isoconstrained

elements in X', and as the Bcimages of isoconstrained elements in X are isoconstrained
in Y, we conclude that the B-images of isoconstrained elements in X are isoconstrained
elements in X'.

If we assume now that the B-image of any element belonging to X' coincides with the
element itself, all the requirements made in Section 2 for operator B are respected and all the
results established in this section can be applied.

The only point which is still missing is the introduction of a metric in X such that (2.11)
holds. This will be achieved if the distance between two fields is defined as the square-root

f h I strain I f h' d'ff< 'o tel t energy 0 t elt I erence, I.e.comp emen ary

d(f1,fz) =J(Uf1 - h ) = J U1t-fz (4.13)
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Then indeed (3.26) and (3.27) imply (2.11).
Consider now equation (2.12). According to the definition of distance,

des, s') =Jlt Iv ~ (150"; . 15ei + 15ki . 15Pi) d V1
where 15 denotes the variation of a magnitude from s to s'.

On the other hand,

(4.14)

15F = 15T3(s)

=15U3 - J(f·15u+g·159)dV
v

15F = 15T3 *(s)

= 15U3* - f L (150", . eiO + 15Pi' I{J dV
v i

But

- f (0" 15u + ji:- 159) d~
1: 1

- f (150"' 15ii + 15p . {l) d~
1:2

(4.15)

15U3 = J ~ (O"i . 15e; + Pi' 15ki) dV. , 15U3* = f L (15O"i' ei + 15Pi . kJ dV. (4.16)
v I v i

Comparing (4.14) and (4.16), and considering that 15O"i is of the same order is 15e;, and 15p;
is of the same order as 15k;, if becomes clear that des, s') is of higher order than J I15FI.
Equation (2.12) becomes then,

(4.17)

for very small values of the distances between sand s'.
This means that the distance between s and sa' tends to zero if the differences between the

I
potential I . ,values of the total 1 t energy correspondmg to sand s , and between sa and

comp emen ary
sa', also tend to zero.

In the sequel, s will denote the three-dimensional solution and sa' the B1-image of the
two-dimensional solution. For understandable reasons, s will be called the exact solution
and sa' the approximate solution.

5. THE THREE-DIMENSIONAL MAGNITUDES AS FUNCTIONS OF THE
THICKNESS

Laws of variation of the three-dimensional magnitudes in terms of the thickness will be
sought now, having in mind that the corresponding two-dimensional magnitudes must not
change when the thickness tends to zero.

The determination of such laws requires the definition of operator B1 or, what is the same,

the choice of the expressions for the three-dimensional' sttrains Iand the three-dimensional
s resses

IdisPlacements ,. f h d' d' . I . d. m terms 0 t e correspon mg two- ImenSlOna magllltu es.
tractIOns

It is well known that many algebraic difficulties can be removed if the shell is assumed thin,
i.e. if the magnitudes Aa are assumed equal to unity. Thinness will be admitted in the sequel.

Consider a conventional shell, i.e. a shell with coefficients l/J = X = </> = 0 and let to be its
thickness which, for sake of simplicity, is assumed constant all over the middle surface.
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. . 1IstrainsIb h "11 .Let the expression for the three-dImensIOna e t e 10 owmg:
stresses

= t[E.p + Ep• + ~lK. /\ a3 . ap

+ Kp /\ a3 . a.)] (5.1)

(5.2)

(5.3)

(5.5)

(5.4)

1 to/2 [3 (~3) 2]
E.3 = - J -2 - 6 - (e.3 + e3.) d~3

to -to/2 to
(5.6)

AO(ell + e22)
e33 = -

2110

We observe that equation (5.4 left) is equivalent to 0"33 = O.
From (5.1-5.4) and the invariance of internal work, we obtain the following expressions

. . 1 Istressesl' f h h d' . 1for the two-dlmenslOna . . In terms 0 t e t ree- ImenSlOna ones:
strams

1 to/2

E.p+Ep.=- J (e.p+epJd~3
to -to/2

12
K. /\ a3 . ap + Kp /\ a3 . a. = 3

to
to/2

J ~3(e.p + ep.) d~3 . (5.7)
-to/2

We observe that N.3 would cease to represent the resultant of stresses 0".3 (equation 5.6
left) if strains e.3 and e3• were not assumed uniformly distributed in the thickness (equation
5.2 left).

We observe also that, by virtue of the thinness assumption and equations (4.1) and (4.2),
N12 = N21 and Mll = -M22 • This is important for the derivation of equations (5.5-5.7
right).

The expression for the two-dimensional coefficients can be obtained also from (5.1-5.4),
following the standard procedure described in Section 4, i.e. by using equations (4.12), (3.9)
and (3.10).

We obtain:

ii = 110 to ii = 110 to (5.8)

X= Ao to X= 2110 20 to (5.9)
2110 + Ao

110 to 5
v=-- v = 12 110 to (5.10)

2
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3 3

f/i = Jlo to f/i = J10 to (5.11 )
12 )2

t0
3

_ 2J10 + 3Ao J1o t0
3

X= (p.o + ..1.0 ) - X = -- (5.12)
12 2J10 + ..1.0 12

ii=Cp=i=O. ii=(j)=i=O. (5.13)

Index 0 indicates that the two-dimensional coefficients refer to the shell with thickness to .
Assume now that the thickness of the shell tends to zero. The equations (5.8-5.13) clearly

show that what was already mentioned before, i.e. that the ratio between the bending
stiffness coefficients f/i and X and the stiffness coefficients ii, A and v also tend to zero.
Indeed, the first ones are proportional to t 3 and the last ones to t. By other words, a conven
tional shell behaves more and more like a membrane as its thickness tends to zero.

The two-dimensional coefficients cannot be kept constant therefore, as the thickness
tends to zero, unless non-vanishing couple-stresses are admitted in the shell, i.e. unless the
three-dimensional coefficients ljt, X and/or cP cease to be zero.

Admitting non-vanishing couple-stresses, equations (5.1-4) must be replaced by

e/lp = epa = 'HEap + Epa + ~3(Ka 1\ a3 • ap _ _ Nap 2 M . ~3

k )]
(jap - (jpa - - + 1 1J a 1\ a3 ap 3"+ p 1\ a3 . aa t t

(5.14)

ea3 + e3a = Ea3 (ja3 = N;3 [~ - 6( ~t3fl (5.15)

p - p. + w(p + p.)
(j3a = W(ja3 (5.16)e3/1 = (ea3

P + Jl + W P - J1)

A(e11 + e22)
(j33 = 0 (5.17)e33 = -

2J1

k/lp=Kap
MaP

(5.18)Jlap = (l - I])-t-

k i3 = k 3i = O. J1i3 = Jl3i = O. (5.19)

It is admitted in equations (5.14-18 right) that a part of the moment vectors Ma is
equilibrated by the stress couples and the remaining part by the couple-stresses. Coefficient 1f,
which is assumed equal to one for t = to and equal to zero for t = 0, takes care of such
partition.

Equation (5.16 right) reflects the fact that, as it will be shown in Section 6, stresses (j3a
must remain bounded as t tends to zero, while stresses (ja3 are of the order of 1ft. Coefficient
W is thus assumed equal to one for t = to and of the order of t a where (X );: I.

In what concerns equation (5.16 left), it results from introducing (j3a =W(ja3 in the
stress-strain equations.

The new expressions for the two_dimensionallstres.sesl which are consistentwith (5.14-19) are
strams

t/2 1Jt/2
N aP =J (jap d~3 Eap + Epa = - (eaP + epa) d~3 (5.20)

-t/2 t -t/2

Na3 = jt/2 (ja3 d~3 Ea3 = ~ f: [2~ - 6(~3)2](ea3 + e3a) d';3
-t/2 t -1/2 t

(5.21)
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t/2

K~ /\ a3 . all + KII /\ a3 . a~ = f
-t/2

[

~3 1
1211"3 (eall + ella) + -(1 -l1)(k~ /\ a3 ' all

t t

+ k ll /\ a3 . a~)] d~3' (5.22)

The two-dimensional coefficients become

Ji = Jlt

1 OJ [0 + OJ) + ~0-OJ)]
- P t
v ="2 0 + OJ)2 Jl

n= <p = i = O.

Ji = Jlt

A= 2JlA t
2Jl + A

_ 5 Jlt
v = - ----""'------=

3 [0 + OJ)2 + ~ 0_OJ)2]

1

X= 2Jl + A 12 2 (l - 11)2

2fJ- + 3A Jlt 3
'" + At

1
iii = 12 2 0 - 11)2

Jlt 3
'" + t{!t

n= <p = i = O.

(5.23)

(5.24)

(5.25)

(5.26)

(5.27)

(5.28)

As it was to be expected, expressions (5.8-5.13) are obtained if t = to and 1] = OJ = 1.
Equating now the two-dimensional coefficients in (5.8-5.13) and (5.23-5.28), we obtain:

to
Jl = Jlo t

1 - OJ 1
P =-- Jloto -

1 + OJ t

to
fJ-=fJ-o

t
(5.29)

(5.30)

(5.31)

(5.32)

(5.33)

<P = O. ¢ = O. (5.34)

These equations show that the three-dimensional coefficients are of the order of l/t.
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The variation of the three-dimensional coefficients with the thickness will be completely
defined only if" and w are given as functions of the thickness. It is interesting to notice that,
if we choose

,2
I} =, Z

o
(5.35)

the expression for IjJ becomes the same in both approaches.
The invariance of internal work, together with equations (5.14--5.19), could give still, for

the second approach, the expressions for the two-dimensional prescribed initial strains.
In the sequel, however, we shall suppose such prescribed initial strains equal to zero.

In order that operator Bz be completely defined, expressions for the three-dimensional

/

disPlacementsl . .. must also be gIVen. Adoptmg
tractIOns

0=0

(5.36)

(5.37)

(5.38)

f II ' . t' h I prescribed tractions lb' d f h' .the 0 owmg expressIOns lor t e 'b d d' ItO tame rom t e mvananceprescn e ISP acemen s
of the external work, are obtained

t/z

N3 =J t13 de 3
-t/2

t/2

1\1 = J (a3e3 /\ a+ ji) d~3'
-t/z

1 t/Z [3 (~3) Z]U3 = - J -- 6 - U3 de 3
t -t/2 2 t

(5.39)

(5.40)

+ ~ (1 - l})iJ] de3 (5.41)

We observe that equations (5.39-5.41 left) 1j.re the same as equations (4.3) and (4.4) if,
of course, the thinness assumption is admitted.

The following expressions for the two-dimensional body force densities in the first
approach can be obtained also from equations (5.36-5.38) and the invariance of external

work:

t/2

F = J r de3
-t/2
t/2

G = f (9 + 83 e3 /\ F) d~3
-t/2

(the prescribed initial
strains were assumed
to vanish)

(5.42)

(5.43)
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These expressions coincide also with those given by equations (4.5) and (4.6), once the
shell is admitted to be thin.

Expressions for the three-dimensional body force densities in terms of the two-dimensional

. . . . . \(5.42) and (5.43)1 I . d W hdenSities, consistent With equatiOns (4.5) and (4.6) are a so reqUire. e may c oose

F ~3f = - + 12yG /\ a3 "3 (5.44)
t t

G
g = (1 - y)-

t

where y plays a role similar to the role of 1'/ in equations (5.14) and (5.18).
Making y = t 3 /10

3
, we obtain

(5.45)

(5.46)F :r; ~3
f = - + 12~ /\ a3 3

1 to

9=(1-::3)~' (5.47)

The important points about (5.46-5.47) is that the body force densities are of the order
of lit and its first derivatives with respect to ~ 3 are bounded.

Similar expressions can be established for the tractions:

N - ~3
(J = - + 12M /\ a3 3 (5.48)

t to

(5.49)

6. ORDER OF MAGNITUDE OF THE STRESSES

Before any convergence analysis is made, the order of magnitude of the three-dimensional
stresses, strains and displacements is to be compared with the order of t.

Conclusions can be drawn from the following points:
(i) As the two-dimensional solution does not depend on the thickness, the energy associated

with such solution remains constant, and thus bounded, as the thickness decreases in
definitely. We admit therefore that the energy associated with the three-dimensional solution
also remains bounded as t tends to zero, and so remain the three-dimensional strains and
displacements as well as the first derivatives of the displacements.t

(ii) By virtue of equations (5.29-34), the three-dimensional elastic coefficients are of the
order of t - 1 .

(iii) Considering that the three-dimensional body force and moment densitites, f and g,
vary with t according to equations (5.46) and (5.47), there follows that such densities are of
the order of t- 1

•

(iv) As the faces of the shell are co-ordinates surfaces with equations ~3 = ± t12, the
stresses 0'3' and Jl3i must have the same values on the faces as the tractions O'i and Jli and,
as such values are prescribed, stresses 0'3i and Jl3i are bounded for ~3 = ±tI2.

t We mean, of course, by strains and displacements, both ordinary strains and displacements, as well as
curvatures and rotations.
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It may be concluded from the preceeding remarks that:
(a) All the derivatives of the strains with order higher than the first, and all the derivatives

of the displacements with order higher than the second, are of the order of t.
(b) The stresses 0'3i and J1.3i together with all the strains and displacements, the first

derivatives of the strains, the first and second derivatives of the displacements and the
derivatives of the stresses with order higher than the first, remain bounded everywhere in
the shell (are of the order of to).

(c) All the remaining stresses and the first derivatives of the stresses are of the order of I!t.
Such conclusions are summarized in Table I.

Table 1. Orders of magnitude of stresses, strains and displacements

Magnitudes
Order

of
derivatives

Stresses
Strains Displacements

0'.1 and fL.1 a3i and fL3i

o
1
2

higher than 2

Let us justify the above conclusions.
In order to show that the stresses are of the order of lit, it suffices to remember that the

strains are bounded (see i) and the elastic coefficients are of the order of lit (see ii).
We are going to show next that the second derivatives of the displacements with order

higher than the second are of the order of lit.
Indeed, the equilibrium equations written in terms of the displacements (Navier's equa~

tions) form an elliptical system of the second order and, according to a general property[9]
of the elliptical equations of this kind, the derivatives of order p + 2 of the unknowns are
of the same order as the pth derivatives of the right-hand sides. As the unknowns are the
displacements and the right-hand sides of the Navier's equations result from dividing the
body force densities (order 1/t, by virtue of iii) by an elastic coefficient (order 1/t, by virtue
of ii), there follows that the right-hand sides are bounded and, therefore, that the second
derivatives of the displacements are also bounded. On the other hand, as all the derivatives
of the body force densities are bounded, the derivatives of the displacements of order higher
than the second are of the order of t.

Now, as the seond derivatives of the displacements are bounded, and the initial strains
vanish, the first derivatives of the strains are bounded and the first derivatives of the stresses
are of the order of lit. t As the derivatives of the displacements with order higher than the
second are of the order of t, so are the derivatives of the strains with order higher than the
first, the corresponding stress derivatives being bounded. t

Finally, as the stresses 0'3i and J1.3i have bounded values for ~3 = ±t/2 (see iv), and the
first derivatives of the stresses are of the order of l/t, there follows that such stresses are
bounded for any value of ~3 or, which is the same, everywhere in the shell.

t Because the elastic coefficients are of the order of l/t (see ii).
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7. CONVERGENCE ANALYSIS

The distance between s and sa' depends on 8Fand 8aF(see equations 4.17).
Let us consider first the expression of 8F.

549

where

lJF=lJU3 - f (f'lJu+g'80)dV
y

- f (ij' 8u + ji . 80) d~
I,

8F = 8U3* - r L (8Gi' eio + 8J1i .l{jo) dV
Jy i

- f (8G' ii - 8J1 . 9) d~ (7.1)
I2

(7.11)

(7.12)

8U3 = fy~(Gj'8ej+Jli'8k;)dV IlJU3* = L~(lJGi·ei+lJJli·ki)dV. (7.2)

lJ denotes variations from the exact solution s to its B-image s/, or, which is the same, to

h 11 d fi ld h
" h h IdisPlacements and strains on the middle surfacel

tea owe e w IC presents t e same .resultants and couples taken on the thIckness
(see equation 4.1-5). Denoting by a prime the magnitudes corresponding to Sf, we can write

ea(0) = ea/(0) Na = Na' (7.3)

ka(O) = ka'(O) M a =Ma' (7.4)

u(O) = u'(O) N=N' (7.5)

0(0) = 0'(0). M=M'. (7.6)

E d· h IstrainsI d' d ,. . b .xpan mg t e correspon mg to s an sma power senes, we 0 tam
stresses

eaC~3) =eaCO) + ~3ea.3(0) +... GaC~3) = GaCO) + ~3Ga.3(0) +... (7.7)

ka(~3) = kaCO) + ~3 ka. 3(0) + ... JlaC~3) = JlaCO) + ~3 Jla. 3(0) + .. , (7.8)

ea'(~3) =.ea'(O) + ~3 e~. 3(0) + ... Ga'(~3) = G/(O) + ~3 G~, 3(0) + ... (7.9)

ka'(~3) =ka'(O) + ~3k~.3(0) +... Jla'(~3) =Jla'(O) + ~3J1~.3(0) +... (7.10)

.. IstrainsI .. 10f the order of tlAs the denvatIves of the WIth order hIgher than the first are b d d 'stresses oun e
the terms ommited in the expressions (7.7) and (7.8) are certainly of higher order than the
constant term and the linear term.

In what concerns expressions (7.9) and (7.10), it must be remembered that s' belongs to
X' and that all the fields belonging to X' can be expressed by equations (5.14-19). Therefore,

the derivatives of order higher than the first of leai: andd kai:j vanish.
Sai an J-Lai

t[Introducing (7.7-7.10 right) into (4.1) and (4.2), (with Aa = 0), we obtain

Na = Ga(O)t

t 3

M a = Jla(O)t + a3 1\ G~ 3(0)-
. 12

:- + higher order terms.
Na' = Ga'(O)t '

M.: ~ .:(O)t +', A.;. ,(0) :~J
t The part of tde text within brackets concerns exclusively the complementary energy method.

IJSS Vol. 10 No. S-F

(7.13)

(7.14)
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As the first derivatives of the stresses are of the order of lit (see Section 6 and equation
5.14-19), there follows that (7.12) and (7.14) can be transformed into

M a = !la(O)t + higher order terms

M a' = Jia'(O)t + higher order terms.

Equations (7.3) and (7.4) (right) are thus equivalent to

O'iO) = 0'/(0)

!liO) = !la'(0)

(7.15)

(7.16)

(7.3')

(7.4')

if higher order terms are neglected.]

Subtracting (7.9) from (7.7) and (7.10) from (7.8), and considering Ig;,~ ::~ g:~)\, there

results
Jea = ~3Jea. 3(0) + .. , I JO'a = ~3JO'a. 3(0) + .
bka = ~3 bka, 3(0) + ... bJia = ~3 b!la. iO) + .

(7.17)

(7.18)

(7.19)

(7.20)

Considering (7.17) and (7.18), and neglecting terms of higher order, we can write

~2 ~2f (O'a . bea + Jia . bka) d~3 f (bO'a . ea + bJia . ka) d~3
-t/2 -t/2

~2 ~2

~ f ~3 bea. 3(0) d~3' ~ f ~3 bO'a. 3(0) . ead~3 .
-~2 -~2

I
strains I " I strains are bounded ITherefore, as the t and the first denvatIves of the f th d f 1/s resses stresses are 0 e or er 0 t

(see Section 6 and equations 5.14-5.19),

~2 I ~2f (0'", . be", + Jia . bko;) d~3 = OCt). f (bO'a . ea + bJia . k",) d~3 = O.
-t/2 -t/2

As, on the other hand, by virtue of the stresses U3i and P,3i and the corresponding strains
being bounded, both in the exact solution and in its B-image (see Section 6 and equations
5.14-5.19).

0'3 . be3 + Ji3 . bk3 I (50'3' e3 + JJi3 . k 3

is bounded, so that we can write

(7.21)

bU3* =J2: «5O'i . ei + b!li . k i) d V = OCt).
V i

(7.22)

The same kind of reasoning can be repeated for the other terms in fJF, leading to the
conclusion that bF is of the order of t.

Let us consider now fJ"F.
, . 1 fi ld h' h lcompatibilizes the same incompatibi1itiesl th tIt'

S IS SImp y a e w IC . . as e exac so u Ion.
" equlhbrates the same external forces

Such a field can easily be constructed. We can take for instance as three-dimensional

\
strains and disPlace.mentsl

stresses and tractIons
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e"=E,, N" (7.23)G=-
" t

k"=K,, M" (7.24)Ji" = -t-

M
(7.25)u=D Ji =-

t

N
(7.26)9=<"> G=-

t

\

E K D and <">1 " \strains and displacementsI '
where N'" M'" N d M are the two-dImensIOnal t d t t' .correspond1Og" , " , an s resses an rac IOns
to the approximate solutions.

, ., \strain-disPlacement\ '
Introducing (7.23-7.26) mto the three-dImensIOnal 'l'b . equatIons, weeqUlI flum

obtain

e i = D, i + ai /\ <">

ki=<">,i'
1t ~ [(h~M"),,, + h1h2 a" /\ N,,]

+ (h 1h2 Jl3),3 + h1h2 a3 /\ G3 + h1h2 9 = 0
(7.28)

A h d · . l!strain-disPlacement\. . fi d d h h 11' h's t e two- ImenSlona 'l'b . equatIOns are satls e an t e s e IS t 10,
eqUlI flum

equations (7.27) and (7.28) reduce simply to

G _
Ji3 3 - a3 /\ G3 = - - 9, t

(7,29)

(7.30)

Equations (7.29) and (7.30) permit to obtain le3 and
d

k31 such that the three-dimensional
G3 an Ji3

Istrain-disPlacementsl . f Ifill d'l'b . equatIOns are u e.eqUlI flum
Such vectors and the ones expressed by (7.23) and (7.24) define completely the field Sa'

The evaluation of ba F can be made exactly as the evaluation of bF, and the conclusion
can be drawn that

Then, by virtue of (4.17),

ba F =OCt). (7.31)

(7.32)

and this means that the exact solution converges to the approximate solution as the thickness
tends to zero.
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8. CONCLUSIONS

The present paper may be seen under two different points of view: either as just a paper
on shells, or as one step more towards the constitution of what may be called a mathematical
theory of structures.

Let us consider the first point of view.
A comprehensive discussion on the foundations of the theory of shells was recently

presented by Naghdi[lO] who indicates as the main problems of the theory of shells:
(a) The development of a two-dimensional theory.
(b) The development of a scheme or a systematic procedure for estimating the error

involved in the use of such theory.
Naghdi mentions that his paper is mainly concerned with the first problem, and not with

the second, for which an explicit answer has not been available.
The present paper can be seen as a contribution for the solution of the second problem.

It provides indeed a simple but powerful method for testing the efficiency and consistency
of any particular theory of shells whose equations can be established according to one of
two 'dual procedures. Such procedures which, in the text, are called the potential energy
and the complementary energy approaches, do not represent really more than a formaliza
tion of the energy approaches popularized by Reissner(l I] in his paper about beams,
plates and shells.

The method was exemplified by applying it to the theory of thin shells. Other approxima
tions can be tested in a similar way and the order of magnitude of the distance between the
approximate and the exact solutions can tell us about their efficiency. In the case of the
thin shell approximation such distance was seen to be of the order of~ t.

Consistency requires that all the terms in (jF and (ja F are of the same order. If they are
not, this means that the approximation of the magnitudes involved in the higher order
terms is unnecessarily high, or that the approximation of the remaining magnitudes is too
low.

For instance, if the distribution assumed for stresses 0"33 is such that equilibrium with the
tractions actually acting on the faces is ensured, i.e. if stresses 0"33 take the prescribed
values for (3 = ± t12, then, the corresponding terms in i5 U are of the order of t 3 and not of
the order of t. The global accuracy is not increased however if the expressions for the
remaining stresses are the ones given in the paper, because the corresponding terms in (jlj

are of the order of t.
As the proposed test is based in examining what happens when the thickness tends to

zero, it may be argued that it seems not very logical to examine the value ofa theory intended
for thick shells, for instance, by seeing what happens when the thickness decreases in
definitely.

The determination of the order of magnitude of the distance in terms of the thickness
gives however a good way of evaluating the speed of convergence, and the higher the speed
of convergence, the higher the values of the thickness for which the same distance between
the approximate and the exact solution, i.e. the same error, is reached.

In what concerns the second point of view, it must be remembered that convergence
analyses have been made for discrete theories generated by the finite element technique,
and convergence theorems were presented for the whole theory of structures and even for
variational methods in general[3, 5, 7, 8].

On the other hand, the role of such theorems in the theory of structures was recognized
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and the way in which they should be applied for the justification of continuous tbeories was
indicated.

The idea of such application was however not materialized before the present paper,
and the fact that the same kind of analysis which has been successfully applied to discrete
models is now applied to continuous ones represents a step forward towards the con
struction of a general mathematical theory of elastic structures.
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A6cTpaKT - nOAo6HhIM o6pa30M KnoMY, 'ITO rrpoHcxoAHT B MeToAe KOHe'lHOrO 3JIeMeHTa,
MOJKHO rrpHHlITh rrOHliTHe CXOAHMOCTH, AJIlI rrOATBepJKileHHlI rrpaBa rrOJIh30BaHHlI IJPHHI.\HIJOM
BHpTyanhHoR pa60ThI II. BapHal.\HOHHhIMH TeopeMaMH, B I.\eJIhlO orrpeAeJIeHHlI ypaBHeHHR
TeopHH o60JIO'leK.

OKa3bIBaeTClI, 'ITO AByXMepHoe peweHHe rrpH6JIHJKaeTClI 60JIee II. 60JIee K TpeXMepHoMy,
eCJIH TOJIII.\HHa CTpeMHTCli K HyJIblO, rrpH yCJIOBHH, 'ITO OTHOCHTeJIbHble 3Ha'leHHlI K03cPQJH
I.\HeHToB H3rH6Hoi!: II. MeM6paHHoi!: JKeCTKOCTH He H3MeHllIOTcll, Korila o6oJIo'lKa rrpHHHMaeT
BRA 60JIee TOHKOR.

TaKoe yCJIOBHe MOJKHO Y'!HTbIBaTb TOJIbKO AJIli CJIy'lali o606II.\eHHOR 060JIO'lKH, T. e. eCJIH
rrpeArrOJIaraeTClI, '!TO MOMeHTHble HarrpllJKeHHlI He HC'le3aIOT.

AHanR3 orrpeAeJIlieT BepXHbIU: rrpeAeJI OTHOCHTeJIbHO pa3Mepa rrpOMeJKyTKa MeJKAY TO'lHbIM
peweHHeM II. rrpH6JIHJKeHHbIM. 3TO lIBJIlIeTCli MOII.\HbIM opYAHeM ilJIji HccrreilOBaHHji 3cPcPeKTHB
HOCTH H COBMeCTHOCTH mo60R 'laCTHOR TeopHR 060JIO'leK.


